

Agence spatiale canadienne

ISS Science Utilization by the Canadian Space Agency

Nicole Buckley Program Scientist Space Life Science

Canada

Canadian Contribution Canadian Canadian Contribution Canadian Canadian Contribution Canadian Canadia

- Space Station Remote Manipulator System (SSRMS) - Canadarm2
- Mobile Remote Servicer Base System (MBS)
- Special Purpose Dexterous Manipulator
- (SPDM) Dextre
- Artificial Vision Unit 5A March 01
- MSS Operations & Training Facility

6A **SSRMS**

UF-2 **MBS** SPDM **KSC**

Appnce200atiale

June 2002

2003

2004 Oct

Canadarm2 & MBS

- Green for on-going ISS Support
- Limited Ground Control capability being implemented to reduce crew time requirement for robotics

1999 2000 Apr 2001 June 2002 2003 2004	1999	2000	Apr 2001	June 2002	2003	2004
--	------	------	----------	-----------	------	------

CSA's Rights to Utilization

CSA ASC

- 2.3% of non-Russian utilization capability
- Predicted at Assembly Complete (pre-Bush):
 - Accommodation: pressurized 1 rack
 - Accommodation: external 1 site
 - Resource: crew time 200 hr/yr
 - Resource: energy 6,000 kW-hr/yr
 - Right to purchase: transportation
 530 + 190 lb/yr (each way)
 - Right to purchase: communication 30 Tb/yr
- At present, CSA's crew time is 24 hr/yr

ISS is used by two Space Science Disciplines:

- Microgravity Sciences
- Space Life Sciences

Microgravity Sciences

- In 1986, created the User Development Program;
 - "to develop an experienced and proficient Canadian Community of Scientists and Engineers to effectively use microgravity environments and facilities, such as the ISS, for Canadian socio-economic and regional benefits"
- In 1994, name change to the Microgravity Sciences Program (MSP)

Microgravity Sciences Program

- Understanding the laws of chemistry and physics in the microgravity of space
- Areas of focus determined in consultation with the Microgravity Sciences Advisory Committee

Program Focus

Materials Science

solidification, crystal growth, diffusion

Fluid and Combustion Science

 motion and structure of fluids in response to external forces

Biotechnology

 structure and behaviour of nonliving organic materials

Recent Scientific Missions

Protein Crystallization Experiment

- Chinese Shenzhou recoverable satellite
- 16 successfully grown proteins were recovered and are under investigation

Recent missions

Protein Reservoi:

- Soret Coefficient in Crude Oil
 - ESA Foton Mission using Canadian equipment made by C-Core
 - Failed on launch
- STS-107 Protein Crystal Growth **Mission**
 - 144 wells to study 11 proteins
 - Experiment lost with Columbia accident

MGS Payloads for ISS

- Vibration Isolation Platform: MIMBU
- Material Science Payload: ATEN furnace
- Protein Crystal Growth Payload: Prospect
- Fluid Science Payload: SURF
- Access to ESA Fluids Science Laboratory (FSL)

MVIS and ESA FSL

- In exchange for contribution, Canada will have access to 5% of ESA's fluid science laboratory
- 4 experimental containers in Phase A
 - Convection and interfacial mass exchange Emulsions and aqueous foams
 - Fluid motion in spherical gaps

ATEN Furnace

- Multi-purpose
- Automated
- Compact
- Easy access to ground units
- Tele-operated
- Low vibration environment

Status of Other Payloads

■ PROSPECT:

- Phase 0/A completed:
- Phase B/C and D to start in FY 04/05
- MIMBU: on hold
- **SURF** Fluid facility: Phase A planned for FY 06/07

Space Life Sciences

- Life Science within the CSA is performed within the Space Science Program
- Space Medicine within the CSA is the responsibility of of the Canadian Astronaut Office
- No in-house research

SLS Program Objectives

- Understand how life adapts, responds and functions in a space environment
 - Develop basic knowledge to support human spaceflight
 - Use the space environment to examine questions of importance on Earth
- Areas of focus selected in consultation with the Space Life Sciences Advisory Committee

Program Emphasis

- Bone and Muscle loss
- Neuroscience

- Radiation biology and dosimetry
- Development

- Cardiovascular Physiology and Metabolism
- Multi- Cultural and Isolation Psychology

Recent SLS missions

H-reflex

- Looked at changes to spinal cord excitability in space
- In collaboration with NASA
- First medical experiment completed on ISS
- Had both shuttle and ISS component

Recent SLS missions

- EVARM (Extravehicular Radiation Monitoring)
 - Measured the radiation doses to the skin, eye and BFO of astronauts during EVA
 - To relate dose to factors in the EVA environment e.g. shielding, orbital position, solar activity
 - In collaboration with NASA

OSTEO-2

- 3 Separate experiments onboard shuttle that looked at different features of bone loss in microgravity
 - Lost onboard STS-107
- Also lost tissue-sharing experiment

SLS Missions Planned

PMDIS-TRAC

- Joint CSA-DLR venture
- PMDIS is shuttle experiment looking at causes of the short-term perception-motor deficits seen when first going into space
- TRAC is a station experiment
- Scheduled for STS-115

SLS Missions planned

Cardiobeat

 Looking at cardiovascular adaptation in microgravity and orthostatic intolerance

CHENSS

Radiation monitor of space environment

International Hardware

- CSA ASC
- Research Facility

- Aquatic Research Facility (ARF)
 - Can control temperature, light (white and infrared), and have 1 g control in space
 - Completely automated
 - Fixation capability
 - Video capability
 - Successful flown

International Hardware

Insect chamber

Insect Habitat

- Based on ARF technology
- will allow up to 6 generations
- very high quality video
- allows study of neural development, radiation sensitivity, behavior

Food chamber

- Difficult to address
- Model organisms
 - C. elegans
 - Arabadopsis

- Life Science and Microgravity Science have developed an international research approach
 - International Space Life Sciences Working Group (ISLSWG)
 - International Microgravity Sciences Working Group (IMSWG)
- Collaborative research is seen as positive, even essential
- Not restricted to ISS

International Approach for ISS

CSA ASC

- Hardware sharing
 - Reduce/eliminate duplication
 - Outcome equal to or greater than that expected from individual participation
- Joint solicitation and review
- Joint implementation
 - each agency is responsible for implementation of their own HW

International Approach

Other projects:

- Joint ground/bedrest studies
- Joint integration of shuttle payloads
- Joint integration of recoverable satellite payloads
- Coordination of "current status" workshops
- Model Organisms

